Source code for emout.utils.poisson

from abc import ABCMeta, abstractmethod
from functools import partial
from typing import Callable, List, Tuple

import numpy as np
import scipy.constants as cn
import scipy.fft


[docs] def poisson( rho: np.ndarray, dx: float, boundary_types: List[str] = ["periodic", "periodic", "periodic"], boundary_values: Tuple[Tuple[float]] = [(0.0, 0.0), (0.0, 0.0), (0.0, 0.0)], btypes: str = None, epsilon_0=cn.epsilon_0, ): """Solve Poisson's equation with FFT. Parameters ---------- rho : np.ndarray 3-dimentional array of the charge density [C/m^3]. The shape is (nz+1, ny+1, nx+1). boundary_types : List[str] of {'periodic', 'dirichlet', 'neumann'}, the boundary condition types, by default ['periodic', 'periodic', 'periodic'] boundary_values : List[Tuple[float]] the boundary values [(x-lower, x-upper), (y-lower, y-upper), (z-lower, z-upper)], by default [(0., 0.), (0., 0.), (0., 0.)] btypes : str string consisting of prefixes of boundary conditions, by default None. If this is set, it takes precedence over boundary_types. dx : float, optional the grid width [m], by default 1.0 epsilon_0 : _type_, optional the electric constant (vacuum permittivity) [F/m], by default cn.epsilon_0 Returns ------- np.ndarray 3-dimentional of the potential [V]. """ # If a boundary condition is specified in abbreviated form by btypes, revert to the original notation. if btypes: btypes_dict = { "p": "periodic", "d": "dirichlet", "n": "neumann", } boundary_types = [btypes_dict[btype] for btype in btypes] POISSON_BOUNDARIES = { "periodic": PeriodicPoissonBoundary, "dirichlet": DirichletPoissonBoundary, "neumann": NeumannPoissonBoundary, } # [x-boundary, y-boundary, z-boundary] boundaries: List[PoissonBoundary] = [ POISSON_BOUNDARIES[_type](2 - i, boundary_values[i]) for i, _type in enumerate(boundary_types) ] rho_target = rho[ tuple(boundary.get_target_slice() for boundary in reversed(boundaries)) ].copy() # Poisson's equation: dphi/dx^2 = -rho/epsilon_0 rho_target = -rho_target / epsilon_0 * dx * dx # Transpose boundary values. for boundary in boundaries: boundary.transpose_boundary_values(rho_target, dx) # Create a FFT-solver with 3d data. forwards = [boundary.fft_forward for boundary in boundaries] backwards = [boundary.fft_backward for boundary in boundaries] fft3d = FFT3d(forwards, backwards) # FFT forward. rhok = fft3d.forward(rho_target) # Caluculate a modified wave number. modified_wave_number = np.zeros_like(rhok, dtype=float) nz, ny, nx = np.array(rho.shape) - 1 for kx in range(rhok.shape[2]): modified_wave_number[:, :, kx] += boundaries[0].modified_wave_number(kx, nx) for ky in range(rhok.shape[1]): modified_wave_number[:, ky, :] += boundaries[1].modified_wave_number(ky, ny) for kz in range(rhok.shape[0]): modified_wave_number[kz, :, :] += boundaries[2].modified_wave_number(kz, nz) # Solve the equation in the wavenumber domain phik = rhok / modified_wave_number # When all boundary conditions are periodic|neumann boundaries, # there is no reference for the potential and it is not uniquely determined, # so the average is set to zero. if all([_type in ("periodic", "neumann") for _type in boundary_types]): phik[0, 0, 0] = 0.0 # FFT backward _phi = fft3d.backward(phik) # Create an array of the same shape as the input rho array. phi = np.zeros_like(rho) phi[tuple(boundary.get_target_slice() for boundary in reversed(boundaries))] = _phi # In the above, the operation was performed on the array excluding the boundary values, # so the boundary values are substituted here. for boundary in boundaries: boundary.correct_boundary_values(phi) return phi
[docs] class FFT3d: def __init__( self, forwards: List[Callable[[np.ndarray], np.ndarray]], backwards: List[Callable[[np.ndarray], np.ndarray]], ): self.__forwards = forwards self.__backwards = backwards
[docs] def forward(self, data3d: np.ndarray) -> np.ndarray: result3d = data3d result3d = self.__forwards[2](result3d, axis=0, norm="ortho") result3d = self.__forwards[1](result3d, axis=1, norm="ortho") result3d = self.__forwards[0](result3d, axis=2, norm="ortho") return result3d
[docs] def backward(self, data3d: np.ndarray) -> np.ndarray: result3d = data3d result3d = self.__backwards[2](result3d, axis=0, norm="ortho") result3d = self.__backwards[1](result3d, axis=1, norm="ortho") result3d = self.__backwards[0](result3d, axis=2, norm="ortho") return result3d
[docs] class PoissonBoundary(metaclass=ABCMeta): def __init__(self, axis: int, boundary_values: Tuple[float] = (0.0, 0.0)): self.__axis = axis self.__boundary_values = boundary_values @property def axis(self) -> int: return self.__axis @property def boundary_values(self) -> Tuple[float]: return self.__boundary_values @property @abstractmethod def fft_forward(self) -> Callable[[np.ndarray], np.ndarray]: pass @property @abstractmethod def fft_backward(self) -> Callable[[np.ndarray], np.ndarray]: pass
[docs] @abstractmethod def get_target_slice(self) -> slice: pass
[docs] @abstractmethod def modified_wave_number(self, k: int, n: int) -> float: pass
[docs] @abstractmethod def transpose_boundary_values(self, rho_target: np.ndarray, dx: float) -> None: pass
[docs] @abstractmethod def correct_boundary_values(self, phi: np.ndarray) -> None: pass
def _get_slices_at(self, index_axis) -> Tuple[slice]: return tuple(index_axis if i == self.axis else slice(None) for i in range(3))
[docs] class PeriodicPoissonBoundary(PoissonBoundary): @property def fft_forward(self) -> Callable[[np.ndarray], np.ndarray]: return scipy.fft.fft @property def fft_backward(self) -> Callable[[np.ndarray], np.ndarray]: return scipy.fft.ifft
[docs] def get_target_slice(self) -> slice: return slice(0, -1)
[docs] def modified_wave_number(self, k: int, n: int) -> float: if k <= int(n / 2): wn = 2.0 * np.sin(np.pi * k / float(n)) else: wn = 2.0 * np.sin(np.pi * (n - k) / float(n)) wn = -wn * wn return wn
[docs] def transpose_boundary_values(self, rho_target: np.ndarray, dx: float) -> None: pass
[docs] def correct_boundary_values(self, phi: np.ndarray) -> None: phi[self._get_slices_at(-1)] = phi[self._get_slices_at(0)]
[docs] class DirichletPoissonBoundary(PoissonBoundary): @property def fft_forward(self) -> Callable[[np.ndarray], np.ndarray]: return partial(scipy.fft.dst, type=1) @property def fft_backward(self) -> Callable[[np.ndarray], np.ndarray]: return partial(scipy.fft.idst, type=1)
[docs] def get_target_slice(self) -> slice: return slice(1, -1)
[docs] def modified_wave_number(self, k: int, n: int) -> float: wn = 2.0 * (np.cos(np.pi * (k + 1) / float(n + 1)) - 1.0) return wn
[docs] def transpose_boundary_values(self, rho_target: np.ndarray, dx: float) -> None: rho_target[self._get_slices_at(0)] = ( rho_target[self._get_slices_at(0)] - self.boundary_values[0] ) rho_target[self._get_slices_at(-1)] = ( rho_target[self._get_slices_at(-1)] - self.boundary_values[1] )
[docs] def correct_boundary_values(self, phi: np.ndarray) -> None: phi[self._get_slices_at(0)] = self.boundary_values[0] phi[self._get_slices_at(-1)] = self.boundary_values[1]
[docs] class NeumannPoissonBoundary(PoissonBoundary): @property def fft_forward(self) -> Callable[[np.ndarray], np.ndarray]: return partial(scipy.fft.dct, type=1, orthogonalize=False) @property def fft_backward(self) -> Callable[[np.ndarray], np.ndarray]: return partial(scipy.fft.idct, type=1, orthogonalize=False)
[docs] def get_target_slice(self) -> slice: return slice(None, None)
[docs] def modified_wave_number(self, k: int, n: int) -> float: wn = 2.0 * (np.cos(np.pi * (k) / float(n)) - 1.0) return wn
[docs] def transpose_boundary_values(self, rho_target: np.ndarray, dx: float) -> None: rho_target[self._get_slices_at(0)] = ( rho_target[self._get_slices_at(0)] - self.boundary_values[0] * dx ) rho_target[self._get_slices_at(-1)] = ( rho_target[self._get_slices_at(-1)] + self.boundary_values[1] * dx )
[docs] def correct_boundary_values(self, phi: np.ndarray) -> None: pass